РАЗВИТИЕ РЕПАРАЦИОННЫХ СИСТЕМ В ПРОЦЕССЕ ЭВОЛЮЦИИ

Автор(и)

  • Володимир Геннадійович Корольов Петербурзький інститут ядерної фізики, Russian Federation

Ключові слова:

репараційні системи, стабільність, клітина, хромосоми, ДНК

Анотація

Репараційні системи, що оперують в мікроорганізмах, вже, практично, досягли межі досконалості і повністю забезпечують потреби клітин у підтримці стабільності їх генетичного матеріалу. Еволюція систем репарації еукаріотичних клітин, очевидно, продовжується швидкими темпами, пристосовуючи їх до змін, як кількості гене-тичного матеріалу на одну клітку, так і ускладнення організації ДНК у хромосомах.

Біографія автора

Володимир Геннадійович Корольов, Петербурзький інститут ядерної фізики

доктор біологічних наук, професор, директор

Посилання

Koonin E. V., Mushegian A. R., Rudd K. E. Sequencing and analysis of bacterial genomes// Curr. Biol. 1996. – V. 6. – P. 404-416.

Aravind L., Walker D. R., Koonin E. V. Conserved domains in DNA repair proteins and evolution of repair systems// Nuclear Acids Res. 1999. – V. 27(3). – P. 1223-1242.

Friedberg E. C., Walker G. C., Siede W. DNA repair and Mutagenesis// American Society of Microbiology. 1995. Washington, D. C.

Lindahl T., Sedgwick B., Sekiguchi M., Nakabeppu Y. Regulation and expression of the adaptive response to alkylating agents// Annu. Rev. Biochem. 1988. – V. 57. – P. 133-157.

Rydberg B., Lindahl T. Nonenzymatic methylation of DNA by the intracellular methyl group donor S-adenosyl-L-methionine is a potentially mutagenic reaction// EMBO J. – V. 1. – P. 211-216.

Thomas L., Yang C.-H., Golgthwait D. A. Two DNA glycosylase in Escherichia coli which release primarily 3-methyladenine// Biochem. J. 1982. – V. 21. – P. 1162-1169.

McCarthy T. V., Karran P., Lindahl T. Inducible repair of O6-alkylated DNA pyrimidines in Escherichia coli// EMBO J. 1984. – V. 3. – P. 545-550.

Terato H., Masaoka A., Asagoshi K. et al. Novel repair activities of AlkA (3-methuladenine DNA glycosilase II) and endonuclease VIII for xanthine and oxanine, guanine lesions induced by nitric oxide and nitrous acids// Nucleic Acids Res. 2002. – V. 30. – P. 4975-4984.

Privezentzer C. V., Saparbaev M., Sumbandam A. et al. AlkA protein is the third Escherichia coli DNA repair protein excising a ring fragmentation product of thymine// Biochemistry. 2000. – V. 39. – P. 14263-14268.

Chen J., Derfler B., Maskati A., Samson L. Cloning a eukaryotic DNA glycosylase repair gene by the suppression of a DNA repair defect in Escherichia coli// Proc. Natl. Acad. Sci. USA. 1989. – V. 86. – P. 7961-7965.

Berdal K. G., Bjoras M., Bjelland S., Seeberg E. Cloning and expression in Escherichia coli of a gene for an alkylbase DNA glycosylase from Saccharomyces cerevisiae; a homologue to the bacterial alkA gene// EMBO J. 1990. – V. 9. – P. 4563-4568.

Chen J., Derfler B., Samson L. Saccharomyces cerevisiae 3-methyladenine DNA glycosylase has homology to the AlkA glycosylase of E. coli and is induced in response to DNA alkylation damage// EMBO J. 1990. – V. 9. – P. 4569-4575.

Liu Y., Xiao W. Bidirectional regulation of two DNA-damage-inducible genes, MAG1 and DDI1, from Saccharomyces cerevisiae // Mol. Microbiol. 1997. – V. 23. – P. 777-789.

Chakravarti D., Ibeanu G. C., Tano K., Mitra S. Cloning and expressionin Escherichia coli of a human cDNA encoding the DNA repair protein N-methylpurine-DNA glycosylase// J. Biol. Chem. 1991. – V. 266. – P. 15710-15715.

Bessho T., Roy R., Yamamoto K. et al. Repair of 8-hydroxyguanine in DNA by mammalian N-methylpurine-DNA glycosilase// Proc. Natl. Acad. Sci. USA. 1993. – V. 90. – P. 8901-8904.

Dosanjh M. K., Roy R., Mitra S., Singer B. 1,N6-ethenoadenine is preferred over 3-methyladenine as substrate by a cloned human N-methylpurine-DNA glycosilase// Biochemistry. 1994. – V. 33. – P. 1624-1628.

Weiss B. Endonuclease II of Escherichia coli is exonuclease III// J. Biol. Chem. 1976. – V. 251. – P. 1896-1901.

Henner W. D., Grunberg S. M., Haseltine W. A. Enzyme action at 3’ termini of ionizing radiation-induced DNA strand breaks// J. Biol. Chem. 1983. – V. 258. – P. 15198-15205.

Demple B., Johnson A., Fung D. Exonuclease III and endonuclease IV remove 3’ blocks from DNA synthesis primers in H2O2-damaged Escherichia coli// Proc. Natl. Acad. Sci. USA. 1986. – V. 83. – P. 7731-7735.

Ljungquist S., Lindahl T., Howard-Flanders P. Methyl methane sulfonate-sensitive mutant of Escherichia coli deficient in an endonuclease specific for apurinic sites in deoxyribonucleic acid// J Bacteriol. 1976. – V. 126. – P. 646-653.

Chan E., Weiss B. Endonuclease IV of Escherichia coli is induced by paraquat// Proc. Natl. Acad. Sci. USA. 1987. – V. 84. – P. 3189-3193.

Roca A. I., Cox M. M. RecA protein: structure, function, and role in recombinational DNA repair// Prog. Nucleic Acid Res. Mol. Biol. 1997. – V. 56. – P. 129-223.

Bianco P. R., Tracy R. B., Kowalczykowski S. C. DNA strand exchange proteins: a biochemical and physical comparison// Front Biosci. 1998. – V. 17(3). – P. 570-603.

Huang J. Transcriptional silencing in Saccharomyces cerevisiae and Schizosaccharomyces pombe// Nuclear Acids Res. 2002. – V. 30. – P. 1465-1482.

Gaillard H., Fitzgerald D. J., Smith C. L. et al. Chromatin remodeling activities act on UV-damaged nucleosomes and modulate DNA damage accessibility to photolyase// J. Biol. Chem. 2003. – V. 278. – P. 17655-17663.

Nilsen H., Lindahl T., Verreault A. DNA base excision repair of uracil residues in reconstituted nucleosome core particles // EMBO J. 2002. – V. 21. – P. 5943-5952.

Li S., Smerdon M. J. Nucleosome structure and repair of N-methylpurines in the GAL1-10 genes of Saccharomyces cerevisiae J. Biol. Chem. 2002. – V. 277. – P. 44651-44659.

Beard B. C., Wilson S. H., Smerdon M. J. Suppressed catalytic activity of base excision repair on rotationally positioned uracil in nucleosomes// Proc. Natl. Aacad. Sci. 2003. – V. 100. – P. 7465-7470.

Nakanishi S., Prasad R., Wilson S. H., Smerdon M. Different structural states in oligonucleosomes are required for early versus late steps of base excision repair// Nucleic Acids Res. 2007. – V. 35. – Р. 4313-4321.

Brand M., Moggs J. G., Ouland- Abdelghani M. et al. UV-damage DNA-binding protein in the TFTC complex links DNA recognition to nucleosome acetylation// EMBO J. 2001. – V. 20. – P. 3187-3196.

Green C. M, Almouzni G. Local action of the chromatin assembly factor CAF-1 at sites of nucleotide excision repair in vivo // EMBO J. 2003. – V. 22. – P. 5163-5174.

Martinez E., Palhan V. B., Tjernberg A. et al. Human STAGA complex is a chromatin-acetylating transcription coactivator that interacts with pre-mRNA splicing and DNA damage-binding factors in vivo// Mol. Cell. Biol. 2001. – V. 21. – P. 6782-6795.

Cazzalini O., Perucca P., Savio M. et al. Interaction of p21(CDKN1A) with PCNA regulates the histone acetyltransferase activity of p300 in nucleotide excision repair// Nucleic Acids Res. 2008. – V. 36. – P. 1713-1722.

Королев В. Г. Хроматин и репарация повреждений ДНК// Генетика. 2011. – Т. 47(4). – С. 449–459.

Hara R., Sancar A. The SWI/SNF chromatin-remodeling factor stimulates repair by human excision nuclease in the mononucleosome core particle// Mol. Cell. Biol. 2002. – V. 22. – P. 6779-6787.

##submission.downloads##

Номер

Розділ

РАДІОЕКОЛОГІЯ ТА РАДІАЦІЙНА БЕЗПЕКА