СОВРЕМЕННЫЕ ПРЕДСТАВЛЕНИЯ О РОЛИ СИСТЕМ РЕПАРАЦИИ КЛЕТОК В ОБЕСПЕЧЕНИИ СТАБИЛЬНОСТИ И НАДЕЖНОСТИ ГЕНОМА

Автор(и)

  • Володимир Геннадійович Корольов Петербурзький інститут ядерної фізики, Російська Федерація

Ключові слова:

стабільність геному, репарація, рекомбінація, хроматин

Анотація

В еукаріотичних клітинах спадкування як точної послідовності ДНК, так і її організації в хроматин, є критичним для підтримки стабільності геному. Різні пошкодження ДНК, викликані ендо- і екзогенними факторами, створюють проблему для підтримки цієї стабільності. Для повного розуміння, як клітини можуть впоратися з цим завданням, необхідно інтегрувати знання про природу цих пошкоджень, їх виявлення і репарації всередині хроматінового оточення.

Біографія автора

Володимир Геннадійович Корольов, Петербурзький інститут ядерної фізики

д.б.н., професор, директор

Посилання

Kent N.A., Chambers A.L., Downs J.A. Dual chromatin remodeling roles for RSC during DNA double strand break induction and

repair at the yeast MAT locus // J. Biol. Chem. – 2007. – V. 282. – P. 27693-27701.

Ray S., Grove A. The yeast high mobility group protein Hmo2 a subunit of the chromatin-remodeling complex INO80, binds DNA

ends // Nuclear Acids Res. – 2009. – V. 37. – P. 6389-6399.

Mimitou E. P, Symington L. S. DNA end resection: many nucleases make light work// DNA Repair. – 2009. – V. 8. – P. 983-995.

Zhu Z., Chung W. H., Shim E.Y. et al. Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends// Cell. –

– V. 134. – P. 981-994.

Robison J. G., Elliott J., Dixon K., Oakley G. G. Replication protein A and the Mre11.Rad50.Nbs1 complex co-localize and interact at

sites of stalled replication forks// J. Biol. Chem. – 2004. – V. 279. – P. 34802-34810.

Shroff R., Arbel-Eden A., Pilch D. et al. Distribution and dynamics of chromatin modification induced by a defined DNA doublestrand break // Curr. Biol. – 2004. – V. 14. – P. 1703-1711.

Rogakou E. P., Boon C., Redon C., Bonner W. M. Megabase chromatin domains involved in DNA double-strand breaks in vivo //

J. Cell. Biol. – 1999. – V. 146. – P. 905-916.

Celeste A., Fernandez-Capetillo O., Kruhlak M. J. et al. Histone H2AX phosphorylation is dispensable for the initial recognition of

DNA breaks // Nat. Cell. Biol. – 2003. – V. 5. – P. 675 0150-679.

Blat Y., Kleckner N. Cohesins bind to preferential sites along yeast chromosome III, with differential regulation along arms versus the

centric region // Cell. – 1999. – V. 98. – P. 249-259.

Tanaka T., Cosma M. P., Wirth K., Nasmyth K. Identification of cohesin association sites at centromeres and along chromosome

arms // Cell. – 1999. – V. 98. – P. 847-858.

Redon C., Pilch D. R., Bonner W. M. Genetic analysis of Saccharomyces cerevisiae H2A serine 129 mutant suggests a functional

relationship between H2A and the sister-chromatid cohesion partners Csm3-Tof1 for the repair of topoisomerase I-induced DNA

damage // Genetics. – 2006. – V. 172. – P. 67-76.

Cook P. J., Ju B. G., Telese F. et al. Tyrosine dephosphorylation of H2AX modulates apoptosis and survival decisions // Nature. –

– V. 458. – P. 591-596.

Downs J. A., Allard S., Jobin-Robitaille O. et al. Binding of chromatin-modifying activities to phosphorylated histone H2A at DNA

damage sites // Mol. Cell. – 2004. – V. 16. – P. 979-990.

Tsukuda T., Fleming A.B., Nickoloff J.A., Osley M.A. Chromatin remodelling at a DNA double-strand break site in Saccharomyces

cerevisiae // Nature. – 2005. – V. 438. – P. 379 –383.

Morrison A.J., Highland J., Krogan N.J. et al. INO80 and gamma-H2AX interaction links ATP-dependent chromatin remodeling to

DNA damage repair // Cell. – 2004. – V. 119. – P. 767-775.

van Attikum H., Fritsch O., Hohn B., Gasser S. M. Recruitment of the INO80 complex by H2A phosphorylation links ATP-dependent

chromatin remodeling with DNA double-strand break repair // Cell. – 2004. – V. 119. – P. 777-788.

Raynard S., Niu H., Sung P. DNA double-strand break processing: the beginning of the end// Genes Dev. – 2008. – V. 22. – P. 2903-2907.

Thoma F. Light and dark in chromatin repair: repair of UV-induced DNA lesions by photolyase and nucleotide excision repair //

EMBO J. – 1999. – V. 18. – P. 6585-6598.

Hara R., Mo J., Sancar A. DNA damage in the nucleosome core is refractory to repair by human excision nuclease // Mol. Cell. Biol. –

– V. 20. – P. 9173-9181.

Ura K., Araki M., Saeki H. et al. ATP-dependent chromatin remodeling facilitates nucleotide excision repair of UV-induced DNA

lesions in synthetic dinucleosomes // EMBO J. – 2001. – V. 20. – P. 2004-2014.

Wang D., Hara R., Singh G. et al. Nucleotide excision repair from site-specifically platinum-modified nucleosomes // Biochemistry. –

– V. 42. – P. 6747-6753

Kosmoski J. V., Ackerman E. J., Smerdon M. J. DNA repair of a single UV photoproduct in a designed Nucleosome // Proc. Natl.

Acad. Sci. U S A. – 2001. – V. 98. – P. 10113-10118.

Wellinger R. E., Thoma F. Nucleosome structure and positioning modulate nucleotide excision repair in the non-transcribed strand of

an active gene // EMBO J. – 1997. – V. 16. – P. 5046-5056.

Smerdon M. J., Lieberman M. W. Nucleosome rearrangement in human chromatin during UV-induced DNA-repair synthesis // Proc.

Natl. Acad. Sci USA. – 1978. – V. 75. – P. 42384241.

Gong F., Fahy D., Smerdon M. Rad4-Rad23 interaction with SWI/SNF links ATP-dependent chromatin remodeling with nucleotide

excision repair // Nat. Struct. Mol. Biol. – 2006. – V. 13. – P. 902-907.

Ura K., Hayes J. J. Nucleotide excision repair and chromatin remodeling // Eur. J. Biochem. – 2002. – V. 269. – P. 2288-2293.

Brand M., Moggs J. G., Ouland- Abdelghani M. et al. UV-damage DNA-binding protein in the TFTC complex links DNA recognition

to nucleosome acetylation // EMBO J. – 2001. – V. 20. – P. 3187-3196.

Ferreiro J. A., Powell N. G., Karabetsou N. et al. Roles for Gcn5p and Ada2p in transcription and nucleotide excision repair at the

Saccharomyces cerevisiae MET16 gene // Nucleic Acids Res. – 2006. – V. 34. – P. 976-985.

Liu X., Smerdon M. J. Nucleotide excision repair of the 5 S ribosomal RNA gene assembled into a Nucleosome // J. Biol. Chem.–-

– V. 275. – P. 23729-23735.

Green C. M, Almouzni G. Local action of the chromatin assembly factor CAF-1 at sites of nucleotide excision repair in vivo // EMBO J. –

– V. 22. – P. 5163 –5174.

Martinez E., Palhan V. B., Tjernberg A. et al. Human STAGA complex is a chromatin-acetylating transcription coactivator that

interacts with pre-mRNA splicing and DNA damage-binding factors in vivo // Mol. Cell. Biol. – 2001. – V. 21. – P. 6782-6795.

Cazzalini O., Perucca P., Savio M. et al. Interaction of p21(CDKN1A) with PCNA regulates the histone acetyltransferase activity of

p300 in nucleotide excision repair // Nucleic Acids Res. – 2008. – V. 36. – P. 1713-1722.

Datta A., Bagchi S., Nag A. et al. The p48 subunit of the damaged-DNA binding protein DDB associates with the CBP/p300 family of

histone acetyltransferase // Mutat. Res. – 2001. – V. 486. – P. 89-97.

Hara R., Sancar A. The SWI/SNF chromatin-remodeling factor stimulates repair by human excision nuclease in the mononucleosome

core particle // Mol. Cell. Biol. – 2002. – V. 22. – P. 6779-6787.

Hara R, Sancar A. Effect of damage type on stimulation of human excision nuclease by SWI/SNF chromatin remodeling factor // Mol.

Cell. Biol. – 2003. – V. 23. – P. 4121-4125.

Wakasugi M., Kasashima H., Fukase Y. et al. Physical and functional interaction between DDB and XPA in nucleotide excision

repair // Nucleic Acids Res. – 2009. – V. 37. – P. 516-525.

Li S., Smerdon M. J. Dissecting transcription-coupled and global genomic repair in the chromatin of yeast GAL1-10 genes // J. Biol.

Chem. – 2004. – V. 279. – P. 14418-14426.

Citterio E., Van Den Boom V., Schnitzler G. et al. ATP-dependent chromatin remodeling by the Cockayne syndrome B DNA repairtranscription-coupling factor // Mol. Cell. Biol. – 2000. – V. 20. – P. 7643-7653.

Fousteri M., Vermeulen W., van Zeeland A. A., Mullenders L. H. Cockayne syndrome A and B proteins differentially regulate recruitment

of chromatin remodeling and repair factors to stalled RNA polymerase II in vivo // Mol. Cell. – 2006. – V.23. – P. 471-482.

Suter B., Livingston-Zatchej M., Thoma F. Chromatin structure modulates DNA repair by photolyase in vivo // EMBO J. – 1977. – V. 16. – P. 2150-2160.

Huang J. Transcriptional silencing in Saccharomyces cerevisiae and Schizosaccharomyces pombe // Nuclear Acids Res. – 2002. – V. 30. –

P. 1465-1482.

Gaillard H., Fitzgerald D. J., Smith C. L. et al. Chromatin remodeling activities act on UV-damaged nucleosomes and modulate DNA

damage accessibility to photolyase // J. Biol. Chem. – 2003. – V. 278. – P. 17655-17663.

##submission.downloads##

Номер

Розділ

Статті