СОВРЕМЕННЫЕ ПРЕДСТАВЛЕНИЯ О РОЛИ СИСТЕМ РЕПАРАЦИИ КЛЕТОК В ОБЕСПЕЧЕНИИ СТАБИЛЬНОСТИ И НАДЕЖНОСТИ ГЕНОМА
Ключові слова:
стабільність геному, репарація, рекомбінація, хроматинАнотація
В еукаріотичних клітинах спадкування як точної послідовності ДНК, так і її організації в хроматин, є критичним для підтримки стабільності геному. Різні пошкодження ДНК, викликані ендо- і екзогенними факторами, створюють проблему для підтримки цієї стабільності. Для повного розуміння, як клітини можуть впоратися з цим завданням, необхідно інтегрувати знання про природу цих пошкоджень, їх виявлення і репарації всередині хроматінового оточення.Посилання
Kent N.A., Chambers A.L., Downs J.A. Dual chromatin remodeling roles for RSC during DNA double strand break induction and
repair at the yeast MAT locus // J. Biol. Chem. – 2007. – V. 282. – P. 27693-27701.
Ray S., Grove A. The yeast high mobility group protein Hmo2 a subunit of the chromatin-remodeling complex INO80, binds DNA
ends // Nuclear Acids Res. – 2009. – V. 37. – P. 6389-6399.
Mimitou E. P, Symington L. S. DNA end resection: many nucleases make light work// DNA Repair. – 2009. – V. 8. – P. 983-995.
Zhu Z., Chung W. H., Shim E.Y. et al. Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends// Cell. –
– V. 134. – P. 981-994.
Robison J. G., Elliott J., Dixon K., Oakley G. G. Replication protein A and the Mre11.Rad50.Nbs1 complex co-localize and interact at
sites of stalled replication forks// J. Biol. Chem. – 2004. – V. 279. – P. 34802-34810.
Shroff R., Arbel-Eden A., Pilch D. et al. Distribution and dynamics of chromatin modification induced by a defined DNA doublestrand break // Curr. Biol. – 2004. – V. 14. – P. 1703-1711.
Rogakou E. P., Boon C., Redon C., Bonner W. M. Megabase chromatin domains involved in DNA double-strand breaks in vivo //
J. Cell. Biol. – 1999. – V. 146. – P. 905-916.
Celeste A., Fernandez-Capetillo O., Kruhlak M. J. et al. Histone H2AX phosphorylation is dispensable for the initial recognition of
DNA breaks // Nat. Cell. Biol. – 2003. – V. 5. – P. 675 0150-679.
Blat Y., Kleckner N. Cohesins bind to preferential sites along yeast chromosome III, with differential regulation along arms versus the
centric region // Cell. – 1999. – V. 98. – P. 249-259.
Tanaka T., Cosma M. P., Wirth K., Nasmyth K. Identification of cohesin association sites at centromeres and along chromosome
arms // Cell. – 1999. – V. 98. – P. 847-858.
Redon C., Pilch D. R., Bonner W. M. Genetic analysis of Saccharomyces cerevisiae H2A serine 129 mutant suggests a functional
relationship between H2A and the sister-chromatid cohesion partners Csm3-Tof1 for the repair of topoisomerase I-induced DNA
damage // Genetics. – 2006. – V. 172. – P. 67-76.
Cook P. J., Ju B. G., Telese F. et al. Tyrosine dephosphorylation of H2AX modulates apoptosis and survival decisions // Nature. –
– V. 458. – P. 591-596.
Downs J. A., Allard S., Jobin-Robitaille O. et al. Binding of chromatin-modifying activities to phosphorylated histone H2A at DNA
damage sites // Mol. Cell. – 2004. – V. 16. – P. 979-990.
Tsukuda T., Fleming A.B., Nickoloff J.A., Osley M.A. Chromatin remodelling at a DNA double-strand break site in Saccharomyces
cerevisiae // Nature. – 2005. – V. 438. – P. 379 –383.
Morrison A.J., Highland J., Krogan N.J. et al. INO80 and gamma-H2AX interaction links ATP-dependent chromatin remodeling to
DNA damage repair // Cell. – 2004. – V. 119. – P. 767-775.
van Attikum H., Fritsch O., Hohn B., Gasser S. M. Recruitment of the INO80 complex by H2A phosphorylation links ATP-dependent
chromatin remodeling with DNA double-strand break repair // Cell. – 2004. – V. 119. – P. 777-788.
Raynard S., Niu H., Sung P. DNA double-strand break processing: the beginning of the end// Genes Dev. – 2008. – V. 22. – P. 2903-2907.
Thoma F. Light and dark in chromatin repair: repair of UV-induced DNA lesions by photolyase and nucleotide excision repair //
EMBO J. – 1999. – V. 18. – P. 6585-6598.
Hara R., Mo J., Sancar A. DNA damage in the nucleosome core is refractory to repair by human excision nuclease // Mol. Cell. Biol. –
– V. 20. – P. 9173-9181.
Ura K., Araki M., Saeki H. et al. ATP-dependent chromatin remodeling facilitates nucleotide excision repair of UV-induced DNA
lesions in synthetic dinucleosomes // EMBO J. – 2001. – V. 20. – P. 2004-2014.
Wang D., Hara R., Singh G. et al. Nucleotide excision repair from site-specifically platinum-modified nucleosomes // Biochemistry. –
– V. 42. – P. 6747-6753
Kosmoski J. V., Ackerman E. J., Smerdon M. J. DNA repair of a single UV photoproduct in a designed Nucleosome // Proc. Natl.
Acad. Sci. U S A. – 2001. – V. 98. – P. 10113-10118.
Wellinger R. E., Thoma F. Nucleosome structure and positioning modulate nucleotide excision repair in the non-transcribed strand of
an active gene // EMBO J. – 1997. – V. 16. – P. 5046-5056.
Smerdon M. J., Lieberman M. W. Nucleosome rearrangement in human chromatin during UV-induced DNA-repair synthesis // Proc.
Natl. Acad. Sci USA. – 1978. – V. 75. – P. 42384241.
Gong F., Fahy D., Smerdon M. Rad4-Rad23 interaction with SWI/SNF links ATP-dependent chromatin remodeling with nucleotide
excision repair // Nat. Struct. Mol. Biol. – 2006. – V. 13. – P. 902-907.
Ura K., Hayes J. J. Nucleotide excision repair and chromatin remodeling // Eur. J. Biochem. – 2002. – V. 269. – P. 2288-2293.
Brand M., Moggs J. G., Ouland- Abdelghani M. et al. UV-damage DNA-binding protein in the TFTC complex links DNA recognition
to nucleosome acetylation // EMBO J. – 2001. – V. 20. – P. 3187-3196.
Ferreiro J. A., Powell N. G., Karabetsou N. et al. Roles for Gcn5p and Ada2p in transcription and nucleotide excision repair at the
Saccharomyces cerevisiae MET16 gene // Nucleic Acids Res. – 2006. – V. 34. – P. 976-985.
Liu X., Smerdon M. J. Nucleotide excision repair of the 5 S ribosomal RNA gene assembled into a Nucleosome // J. Biol. Chem.–-
– V. 275. – P. 23729-23735.
Green C. M, Almouzni G. Local action of the chromatin assembly factor CAF-1 at sites of nucleotide excision repair in vivo // EMBO J. –
– V. 22. – P. 5163 –5174.
Martinez E., Palhan V. B., Tjernberg A. et al. Human STAGA complex is a chromatin-acetylating transcription coactivator that
interacts with pre-mRNA splicing and DNA damage-binding factors in vivo // Mol. Cell. Biol. – 2001. – V. 21. – P. 6782-6795.
Cazzalini O., Perucca P., Savio M. et al. Interaction of p21(CDKN1A) with PCNA regulates the histone acetyltransferase activity of
p300 in nucleotide excision repair // Nucleic Acids Res. – 2008. – V. 36. – P. 1713-1722.
Datta A., Bagchi S., Nag A. et al. The p48 subunit of the damaged-DNA binding protein DDB associates with the CBP/p300 family of
histone acetyltransferase // Mutat. Res. – 2001. – V. 486. – P. 89-97.
Hara R., Sancar A. The SWI/SNF chromatin-remodeling factor stimulates repair by human excision nuclease in the mononucleosome
core particle // Mol. Cell. Biol. – 2002. – V. 22. – P. 6779-6787.
Hara R, Sancar A. Effect of damage type on stimulation of human excision nuclease by SWI/SNF chromatin remodeling factor // Mol.
Cell. Biol. – 2003. – V. 23. – P. 4121-4125.
Wakasugi M., Kasashima H., Fukase Y. et al. Physical and functional interaction between DDB and XPA in nucleotide excision
repair // Nucleic Acids Res. – 2009. – V. 37. – P. 516-525.
Li S., Smerdon M. J. Dissecting transcription-coupled and global genomic repair in the chromatin of yeast GAL1-10 genes // J. Biol.
Chem. – 2004. – V. 279. – P. 14418-14426.
Citterio E., Van Den Boom V., Schnitzler G. et al. ATP-dependent chromatin remodeling by the Cockayne syndrome B DNA repairtranscription-coupling factor // Mol. Cell. Biol. – 2000. – V. 20. – P. 7643-7653.
Fousteri M., Vermeulen W., van Zeeland A. A., Mullenders L. H. Cockayne syndrome A and B proteins differentially regulate recruitment
of chromatin remodeling and repair factors to stalled RNA polymerase II in vivo // Mol. Cell. – 2006. – V.23. – P. 471-482.
Suter B., Livingston-Zatchej M., Thoma F. Chromatin structure modulates DNA repair by photolyase in vivo // EMBO J. – 1977. – V. 16. – P. 2150-2160.
Huang J. Transcriptional silencing in Saccharomyces cerevisiae and Schizosaccharomyces pombe // Nuclear Acids Res. – 2002. – V. 30. –
P. 1465-1482.
Gaillard H., Fitzgerald D. J., Smith C. L. et al. Chromatin remodeling activities act on UV-damaged nucleosomes and modulate DNA
damage accessibility to photolyase // J. Biol. Chem. – 2003. – V. 278. – P. 17655-17663.